引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 8次   下载 13 本文二维码信息
码上扫一扫!
基于多组学与机器学习的黄芪赤风自拟方调控线粒体-代谢轴改善肌少症的机制研究
刘晓铭,刘 慧,邝盈妍,胡劭文
0
(深圳市宝安区中医院,广东?深圳,518100;广州中医药大学第七临床医学院,广东?深圳, 518100;中山市康复医院,广东?中山,528400)
摘要:
目的:通过整合空间代谢组学、单细胞转录组学及机器学习算法,系统解析黄芪赤风自拟方靶向“线粒体-代谢轴”改善肌少症的多层级调控机制。方法:在中医药系统药理学数据库与分析平台(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,TCMSP)、在线人类孟德尔遗传数据库(Online Mendelian Inheritance in Man,OMIM)等数据库上筛选黄芪赤风自拟方活性成分和肌少症相关靶点,结合多组学数据(GSE1428等数据集)进行差异基因识别,通过12种机器学习算法筛选出5个核心基因。结果:功能富集分析表明,这些基因参与氧化磷酸化、嘌呤代谢及转化生长因子-β(Transforming Growth Factor-Beta,TGF-β)通路,并介导线粒体生物合成与能量代谢调控。免疫浸润分析揭示肌少症中T细胞亚群(CD4记忆T细胞)与巨噬细胞M2的异常浸润,且脂素1(Lipin 1,LPIN1)与免疫微环境显著相关。分子对接验证了维生素E与核心靶点的高亲和力,提示其潜在治疗价值。结论:研究构建了药物-成分-线粒体-代谢基因网络,阐明了黄芪赤风自拟方多靶点协同机制,为中医治疗肌少症提供了“数据-算法-机制”三位一体的新范式,为精准介入策略奠定了理论基础。
关键词:  肌少症  黄芪赤风自拟方  线粒体-代谢轴  多组学  机器学习
DOI:
Mechanism of self-made Huangqi Chifeng prescription improving sarcopenia by regulating the mitochondria-metabolism axis: A study based on multi-omics and machine learning
LIU Xiaoming,LIU Hui,KUANG Yingyan,HU Shaowen
(Baoan Hospital of Traditional Chinese Medicine,Shenzhen 518100,Guangdong,China;The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine,Shenzhen 518100,Guangdong,China;Zhongshan Rehabilitation Hospital,Zhongshan 528400,Guangdong,China)
Abstract:
Objective: To systematically analyze the multi-level regulatory mechanism of self-made Huangqi Chifeng Decoction in improving sarcopenia by targeting the “mitochondria-metabolism axis” based on the integration of spatial metabolomics,single-cell transcriptomics,and machine learning algorithms. Methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Online Mendelian Inheritance in Man were used to obtain the targets associated with the active components of self-made Huangqi Chifeng Decoction and the disease sarcopenia,and multi-omics data (including GSE1428 dataset) were used to identify differentially expressed genes. A total of 12 machine learning algorithms were used to obtain 5 core genes. Results: The functional enrichment analysis showed that these genes participated in oxidative phosphorylation,purine metabolism,and the transforming growth factor-β pathway and mediated the regulation of mitochondrial biogenesis and energy metabolism. The immune infiltration analysis revealed abnormal infiltration of T-cell subsets (CD4 memory T cells) and macrophage M2 in sarcopenia,and lipin 1 was significantly associated with the immune microenvironment. Molecular docking validated the high affinity between vitamin E and core targets,suggesting that it had a certain therapeutic value. Conclusion: This study constructs a drug-component-mitochondria-metabolic gene network,clarifies the multi-target synergistic mechanism of self-made Huangqi Chifeng Decoction,and establishes a novel “data-algorithm-mechanism” paradigm for traditional Chinese medicine treatment of sarcopenia,which lays a theoretical foundation for precise intervention strategies.
Key words:  sarcopenia  self-made Huangqi Chifeng Decoction  mitochondria-metabolism axis  multi-omics  machine learning

用微信扫一扫

用微信扫一扫